SPECIFICATION

ITEM	COOL WHITE TOP VIEW LED
MODEL	PCL-C6WCZ33SC
CUSTOMER	
ISSUED DATE	

(C U S T O M E R				
Approved by	Approved byApproved byApproved by				
/	/	/			
	SUPPLIEF				

Checked by

/

Approved by

/

POWERLIGHTEC Co., LTD.				
110-1 Galgot - ri, Jinwy - myun, Pyeongtaek-si, Kyunggi – do, Korea				
Tel : +82-31-379-5400 Fax : +82-31-378-9759				
http://www.powerlightec.com				

The World best semiconductor

Drawn by

5

/

CONTENTS

1.	Revision history
2.	General Description
3.	Electro-Optical Characteristics
4.	Ranks
5.	Composition of Package
6.	Environmental pollution free
7.	Typical Electrical
	/ Optical Characteristics Curves
8.	Classification by name
9.	Reliability
10.	Soldering Condition
11.	Reel Packing Structure
12.	Precaution for Use

<u>1. Revision history</u>

Title		Specification for Approval		
Doc	. No.	KQSP-LL-3207		
Rev. No.	Date	Summary of revision	Remarks	
00	2003.07.	New establishment		
01	2004.10.	New Chromaticity Coordinates ranks		
01	2004.12.	Appliance Pb free material		
03	2006.04.	Document registration number change		
04	2007.11	Revised All Sheets		
05	2008.02	Model name, Outline Dimensions, Ranks		
06	2008.10	Model name, Precaution for Use		

2. General Description

(1) Features

- Package Size : $5.4 \times 5.0 \times 1.6$ mm
- SMD (Top View) type
- Very wide viewing angle
- Diffusion lens type
- Chip material based on InGaN
- High luminous Intensity
- Long life time
- ESD protection (Level 2 under 2KV)

(2) **Outline Dimensions**

UNIT : mm

−② −④ Cathode −⑥ ^(White)

3

3. Electro-Optical Characteristics

(1) **Absolute Maximum Rating**

			(Ta=25℃)
Parameter	Symbol	Value	Unit
Forward Current	I _F	90	mA
Peak Forward Current *	I _{FP}	300	mA
Reverse Voltage	V _R	5	V
Power Dissipation	P _D	360	mW
Operating Temperature	Topr	-40 to +85	°C
Storage Temperature	Tstg	-40 to +100	°C
Soldering temperature	Tsol	Reflow soldering : 260 °C, 10 sec Hand Soldering : 300 °C, 3 sec	

• Duty Ratio $\leq 1/10$, Pulse Width ≤ 10 msec

Electrical / Optical Characteristics (2)

						(Ta=25℃)
Parameter	Symbo l	Condition	Min	Тур	Max	Unit
Forward Voltage	V _F	$I_F = 60 \text{ mA}$	-	3.2	3.6	V
Reverse Current	I _R	V _R =5V	-	-	10	μA
Luminous Intensity	I _V	$I_F = 60 \text{ mA}$	2,500	3,000	-	mcd
Viewing Angle *	$2\theta_{1/2}$	$I_F = 60 \text{ mA}$	100	120	140	deg.
Chromaticity coordinates	-	$I_F\!\!=\!\!60\text{mA}$	-	X : 0.28 Y : 0.29		-

Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve. Please refer to rank table.

 \star θ 1/2 is the off-axis angle at which the luminous intensity is half the axial luminous intensity.

PCL-C6WCZ33SC

4. Ranks

(1) Luminous Intensity Ranks

(1) Dummous men					(Ta=25℃)
Iv Rank	Condition	Min	Тур	Max	Unit
Α	I _F =60mA	3,000	-	3,500	
В		3,500	-	4,000	
С		4,000	-	4,500	mcd
D		4,500	-	5,000	meu
Е		5,000	-	5,500	
F		5,500	-	6,000	

% Measurement Uncertainty of the Luminous Intensity : $\pm 10\%$

(2) Forward Voltage Ranks

(Ta=25℃)

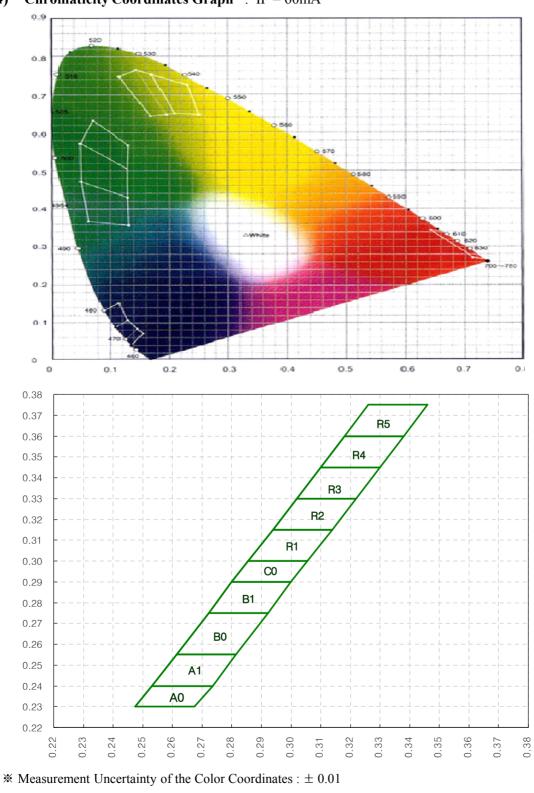
V _F Rank	Condition	Min	Тур	Max	Unit
А		2.8	-	2.9	
В		2.9	-	3.0	
С		3.0	-	3.1	
D	$I_F = 60 \text{ mA}$	3.1	-	3.2	V
Е		3.2	-	3.3	
F		3.3	-	3.4	
G		3.4	-	3.5	

* Measurement Uncertainty of the Forward Voltage : $\pm 0.07V$

(Ta=25℃)

PCL-C6WCZ33SC

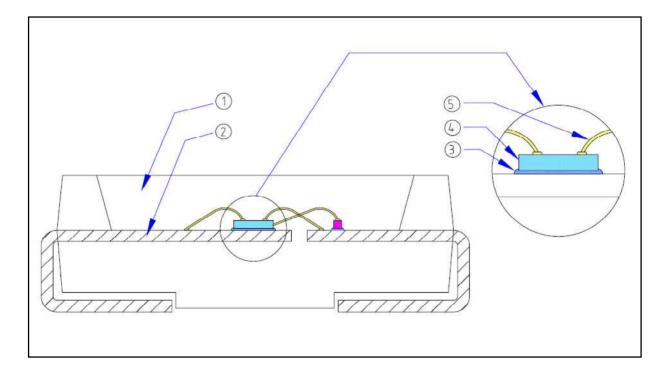
4. Ranks


(3)	Chromaticity Coordinates ranks	: IF = 60mA
_		

					(1a-23 C)
Rank	Х	Y	Rank	Х	Y
	0.2475	0.2300		0.2855	0.3000
A0	0.2675	0.2300	R1	0.3055	0.3000
AU	0.2735	0.2400	nı	0.3140	0.3150
	0.2530	0.2400		0.2940	0.3150
	0.2530	0.2400		0.2940	0.3150
A1	0.2735	0.2400	R2	0.3140	0.3150
	0.2815	0.2550	ΠĽ	0.3220	0.3300
	0.2615	0.2550		0.3020	0.3300
	0.2615	0.2550		0.3020	0.3300
B0	0.2815	0.2550	R3	0.3220	0.3300
BU	0.2922	0.2750	110	0.3300	0.3450
	0.2722	0.2750		0.3100	0.3450
	0.2722	0.2750		0.3100	0.3450
B1	0.2922	0.2750	R4	0.3300	0.3450
וט	0.3000	0.2900	114	0.3380	0.3600
	0.2800	0.2900		0.3180	0.3600
	0.2800	0.2900		0.3180	0.3600
C0	0.3000	0.2900	R5	0.3380	0.3600
0	0.3055	0.3000	n0	0.3460	0.3750
	0.2855	0.3000		0.3260	0.3750

* Measurement Uncertainty of the Color Coordinates : ± 0.01

4. Ranks



(4) Chromaticity Coordinates Graph : IF = 60mA

5. Composition of Package

(1) Composition of Package

(2) Component material

Number	Item	Material	
1	Mold Resin	Silicone	
2	Electrodes	Ag Plating Cu Alloy	
3	Die adhesive	Ag Epoxy or Silicone	
4	LED Chip	InGaN	
5	Au Wire	1.0~1.2mil	

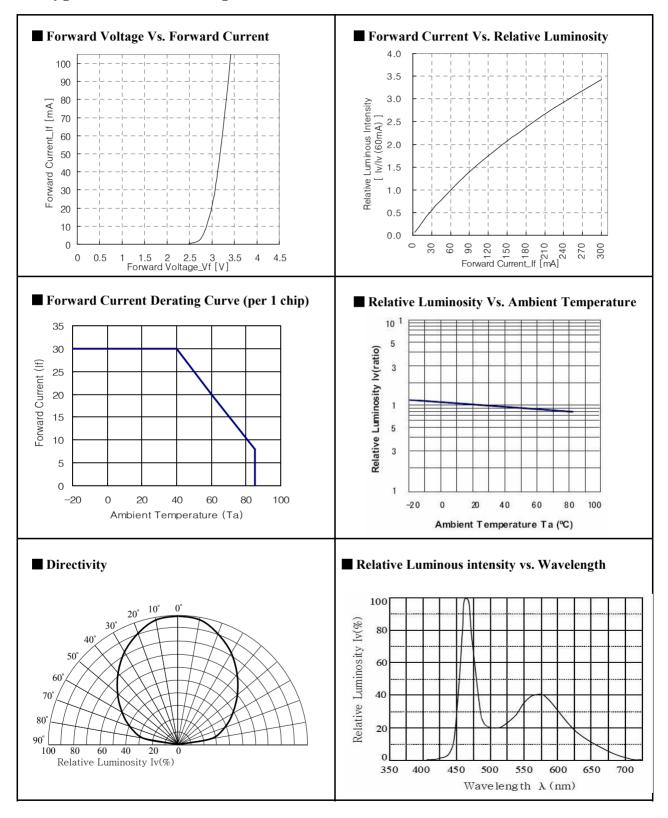
6. Environmental pollution free

(1) Testing institute

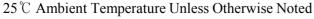
: Korea Environment & Merchandise Testing Institute

(2) Test material

: LED-PCB 🕨 🛈 Resin, 2 Metal

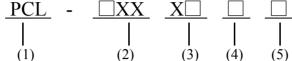

1 Resin Test

Test item	Unit	Result	Test method
Pb	mg/kg	No detection	ISO 6101-2 (AAS)
Cd	mg/kg	No detection	EN 1122 (ICP)
Hg	mg/kg	No detection	ISO 3856/7 (AAS) ISO 3856/5
Cr ⁺⁶	mg/kg	No detection	UV-Vis. Spectrophotometer


2 Metal Test

Test item	Unit	Result	Test method
Pb	mg/kg	No detection	ISO 4749-98
Cd	mg/kg	No detection	ISO 5960-84
Hg	mg/kg	No detection	JIS H 1066-93 ICP analysis method
Cr ⁺⁶	µg/kg	No detection	ISO 3613:2000(E)

7. Typical Electrical / Optical Characteristics Curves



(8)

(9)

8. Classification by name

(1) **POWERLIGHTEC Lamp**

(2) PACKAGE TYPE

C0	Р	1608 C/LED Package, T=0.3mm
C1	Р	1608 C/LED Package, T=0.4mm
C2	Р	1608 C/LED Package, T=0.55mm
C3	Р	4014 Side View LED, T=0.8mm
C31	Р	4014 Side View LED, T=0.6mm
C32	Р	4014 Side View LED, T=0.48mm
C4	Р	3528 Top View LED, T=1.9mm
C41	Р	3528 TOP LED Transfer T=1.2mm
C42	Р	3528 TOP LED Transfer T=0.9mm
C5	Р	3020 Top View LED, T=1.3mm
C6	Р	5450 Flash LED Package T=1.6mm
C61	Р	5450 Flash LED Package T=0.9mm
C7	Р	1615 Seven Color Package
C71	Р	1612 Dual Color Package
C8	Р	Power LED Package (HB)
P1	Р	1608 C/LED PCB Package T=0.4mm

(1)

S11	D	3810 Side View LED, T=0.8mm
S12	D	3810 Side View LED, T=0.6mm
S21	Ν	4011 Side View LED, T=0.8mm
S22	Ν	4011 Side View LED, T=0.6mm
S31	D	5508 Side View LED, T=0.8mm
S32	D	5506 Side View LED, T=0.6mm
T2	D	5450 Flat Type LED, T=0.9mm
Т3	D	5450 Flat Type LED, T=1.3mm
T4	D	5450 Flat Type LED, T=1.3mm (2 nd Ver.)
PM80	D	8080 Metal Power Package
PD13	D	1314 Dragon EYE Power Package

(6)

(7)

N: New Product

P: Product

D: Develop Product

(3) EMITION COLOR

В	С	SB	G	Y	0	Α	R
Blue	Cyan	Sky Blue	Green	Yellow	Orange	Amber	Red
CW	WW	PW	YG	D	RGB	Ι	
Cool White	Warm White	Pink White	Y-Green	Dual	R, G, B	Infrared	

(4) LENS COLOR

А	A Colored Transparency		Colored Diffusion
В	B Colorless Transparency		Milky Diffusion

(5) ESD PROTECTION (Zener Diode: Z / Varistor: V / No Protection: N)

(6) NUMBER OF CHIP (1Chip: 1/2Chip: 2/3Chip: 3/4Chip: 4/5Chip: 5)

- (7) NUMBER OF ZENER (No Zener: 0 / 1Zener: 1 / 2Zener: 2 / 3Zener: 3)
- (8) MOLD RESIN (Epoxy: E / Silicone: S)
- (9) POLARITY MARK (Anode: A / Cathode: C)

9. Reliability

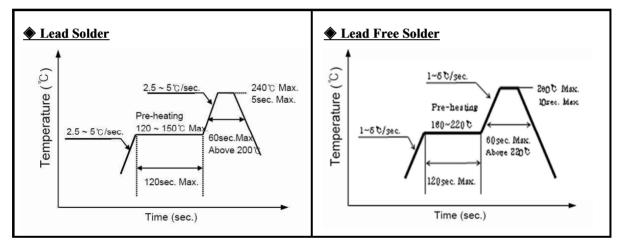
(1) Test items and results

Test Item	Standard Test Method	Test Conditions	Note	Number of Damaged
Resistance to Soldering Heat (Reflow Soldering)	MIL-STD-105D	Tsol=260 °C, 10sec. (Pre treatment 30 °C, 70%, 168hrs.)	2 times	0/20
Solderability (Reflow Soldering)	MIL-STD-105D	Tsol=215±5°C, 3sec.	1 time over 95%	0/20
Temperature Cycle	MIL-STD-105D	-40 ℃ ~ 25 ℃ ~ 100 ℃ ~ 25 ℃ 30min. 5min. 30min. 5min.	100 cycles	0/20
High Temperature Storage	MIL-STD-105D	Ta=100 ℃	1000 hrs.	0/20
Humidity Heat Load	MIL-STD-105D	Ta=60 ℃, RH=90%	1000 hrs.	0/20
Low Temperature Storage	MIL-STD-105D	Ta=-40 ℃	1000 hrs.	0/20
Life Test Condition 1	MIL-STD-105D	Ta=25℃, IF=60mA	1000 hrs.	0/20
Life Test Condition 2	MIL-STD-105D	Ta=25℃, IF=90mA	500 hrs.	0/20
High Temperature Life Test		Ta=85℃, IF=15mA	1000 hrs.	0/20
High Humidity Heat Life Test		60℃, RH=90%, IF=45mA	500 hrs.	0/20
Low Temperature Life Test		Ta=-40 ℃, IF=60mA	1000 hrs.	0/20

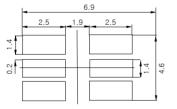
(2) Criteria for judging the damage

Itam	Symph al	Test Canditions	Criteria for Judgment		
Item	Symbol	Test Conditions	Min.	Max.	
Forward Voltage Reverse Current Luminous Intensity	VF IR IV	IF=60mA VR=5V IF=60mA	- - L.S.L.**) × 0.7	U.S.L.*) × 1.1 U.S.L.*) × 2.0 -	

*) U.S.L. : Upper Standard Level **) L.S.L. : Lower Standard Level



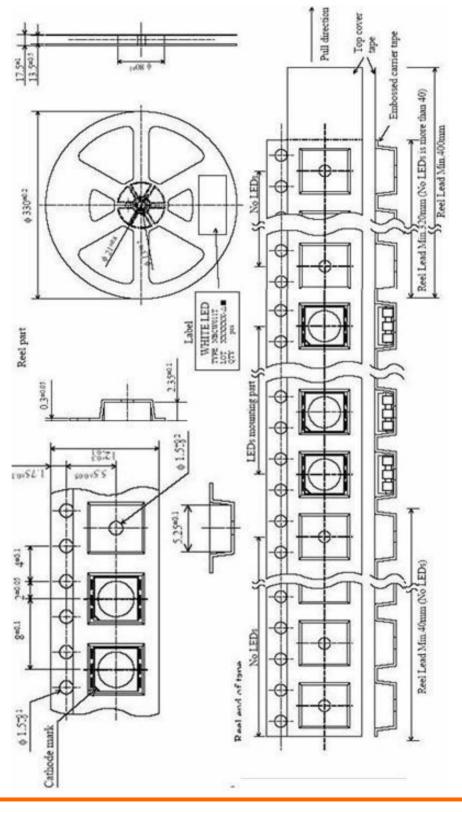
10. Soldering Condition


(1) Soldering condition

Reflow soldering			Hand soldering		
Step	Lead solder	Lead free Solder	Condition	Spec.	
Pre heating	120~150 ℃	180~220 ℃	Soldoring Tomp	Max 300 °C	
Pre heating time	Max 120 sec.	Max 120 sec.	Soldering Temp.		
Peak temp.	Мах 240 °С	Мах 260 °С	Caldenine Time	M 2	
Soldering time	Max 10 sec.	Max 10 sec.	Soldering Time	Max 3sec.	

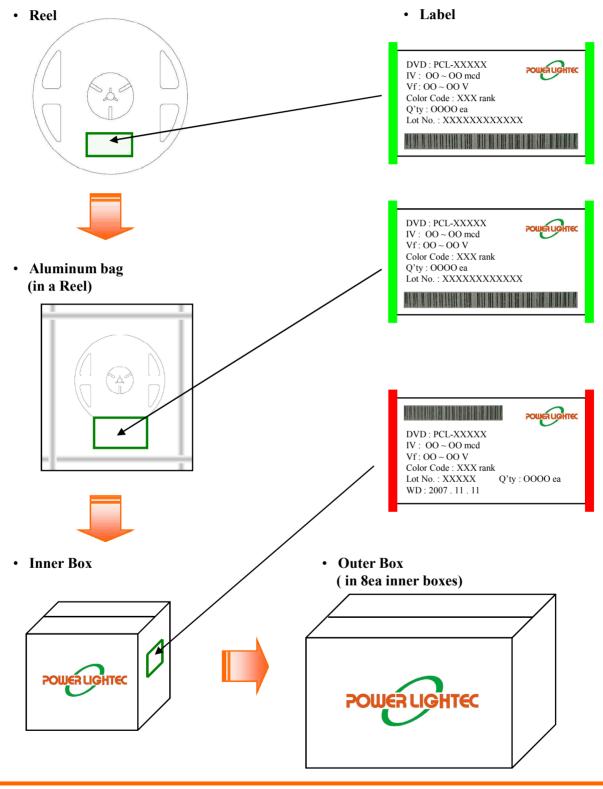
(2) Recommended Reflow Soldering profile

(3) Recommended Soldering pattern


(4) Soldering Cautions

- Modifications should not be done after the LEDs have been soldered.
- If modifications cannot be avoided, a double-head soldering iron should be used after checking whether the characteristics of the LEDs will not be damaged by modification after soldering.
- Reflow soldering, do not apply force to the package during heating.
- After soldering, do not warp the circuit board.

11. Reel Packing Structure


(1) Carrier tape & Reel dimensions

<u>11. Reel Packing Structure</u>

(2) Packing & Packaging

12. Precaution for Use

(1) Moisture-proof Package

- When moisture is absorbed into the LEDs it may vaporize and expand during soldering. There is a possibility that this can cause the exfoliation of the contacts and the damage the optical characteristics of the LEDs. For this reason, the moisture proof package is used to keep moisture to a minimum in the package.
- The Moisture proof package is made of an aluminum moisture proof bag. A package of a moisture absorbent material (Silica gel) is inserted into the aluminum moisture proof bag.

(2) Storage

- Storage Condition
 - Before opening the package : The LEDs should be kept at 5~30 $^\circ$ C, 65%RH or less.
 - After opening the package : The LEDs should be kept at 5~30°C, 30%RH or less.
- The LEDs should be soldered within 168 hours(7days) after opening the package.
- If unused LEDs remain, they should be stored in moisture proof package, such as sealed containers with package of moisture absorbent material (silica gel). It is also recommended to return the LEDs to the original moisture proof bag and to reseal the moisture proof bag again
- If the moisture absorbent material (silica gel) has faded away or the LEDs have exceeded the storage time, baking treatment should be performed using the following conditions
 Baking treatment : more than 24 hours at 65 ± 5 ℃

(3) Heat Generation

• Heat generation must be taken into design consideration when using the LEDs.

The coefficient of temperature increase per input electric power is about 0.62 °C/mW at the LED's active layer. This coefficient will be affected by the heat resistance of the circuit board and by dense mounting of the LEDs. At the same time, precautions must be taken into the design of circuitry to avoid intense heat generation. Proper designs which allow radiation of heat, etc. may be needed.

• The operating current should be decided after considering the ambient maximum temperature when the LEDs are illuminating.

(4) Static Electricity

- Static Electricity and surge damages the LEDs. It is recommended to use a wrist band or anti-electrostatic glove when handling the LEDs.
- All devices, equipment and machinery must be properly grounded.
- When inspecting own final products on which LEDs were mounted, it is recommended to check also whether the mounted LEDs are damaged by static electricity or not. It is easy to find static-damaged LEDs by light emission test at lower current (below 1 mA is recommended).
- Damaged LEDs will show some unusual characteristics such as leak current remarkably increases, starting forward voltage becomes lower, or the LEDs get unlighted at the low current.

12. Precaution for Use

(5) Cleaning

• Use Isopropyl Alcohol as a solvent for cleaning the LEDs. Using other solvents may dissolve the LED package and the epoxy. Caution is needed.

Ultrasonic cleaning of the LEDs should not be done.

(6) Others

- Care must be taken to ensure that the reverse voltage will not exceed the absolute maximum rating when using LEDs with matrix drive.
- The electrode sections are plated with silver. Those will become discolored by contact with corroded gas etc. Precautions must be taken to maintain a clean storing atmosphere.
- The LEDs light output is strong enough to injure human eyes. Precautions must be taken to prevent looking directly at the LEDs with unaided eyes for more than a few seconds.
- These LEDs described in this brochure are intended to be used for ordinary electronic equipment (such as office equipment, communications equipment, measurement instruments and household appliance). Consult POWERLIGHTEC's sales staff in advance for information on the applications in which exceptional quality and reliability are required, particularly when the failure or malfunction of the LEDs may directly jeopardize life or health.

(such as airplanes, aerospace, automobiles, traffic control equipment, life support systems and safety devices)

- User shall not reverse engineer by disassembling or analysis of the LEDs without having the prior written consent of POWERLIGHTEC. When defective LEDs are found, User shall inform to POWERLIGHTEC directly before disassembling or analysis.
- The formal specifications must be exchanged and signed by both parties before large volume purchase begins.
- The appearance and specifications of the product may be modified for improvement without notice.

